5 TOP MESSAGES

1. Only use the recovery position for casualties who do NOT meet the criteria for the initiation of rescue breathing or chest compressions (CPR).

2. Use stroke scale assessment protocols for the early recognition of stroke.

3. When exertional or non-exertional heatstroke is suspected, immediately remove the casualty from the heat source, commence passive cooling and use additional, available cooling techniques.

4. To control severe-life threatening bleeding, apply direct pressure and consider the use of a haemostatic dressing or the application of a tourniquet.

5. For thermal burns, remove the casualty from the heat source and commence immediate cooling of the burn with cold or cool water for 20 minutes. Loosely cover the burn with a dry, sterile dressing or cling wrap.
For adults and children with decreased level of responsiveness, due to medical illness or non-physical trauma that do NOT meet criteria for the initiation of rescue breathing or chest compressions (CPR), position the casualty into a lateral, side-lying recovery (lateral recumbent) position.
KEY EVIDENCE

Earlier detection of stroke in the prehospital setting will reduce time to treatment delays and prenotification of the hospital is key to improve successful treatment.

Use of stroke recognition scales in the prehospital setting increased the number of patients with confirmed stroke diagnosis.

KEY RECOMMENDATIONS

Use stroke scale assessment protocols for the early recognition of stroke.
Heat stroke occurs when the core body temperature exceeds 40°C. It is a medical emergency and can lead to severe organ damage and death if the core temperature is not reduced promptly. The fastest rate of cooling was achieved with use of whole body (neck down) water immersion, at a temperature between 1-26°C. Other forms of active cooling, including the use of ice packs to the axillae, groin and neck, use of showers, ice sheets or towels, and misting/fanning. Passive cooling was slightly faster than evaporative cooling.

For adults with exertional or non-exertional heat stroke actively cool the casualty using whole body (neck down) water immersion at 1-26°C until a core body temperature below 39°C has been reached. If cold water immersion is not available use any other cooling technique immediately available.
CONTROL OF SEVERE-LIFE THREATENING BLEEDING

KEY EVIDENCE

Uncontrolled bleeding is the primary cause of death in up to 35% of victims of trauma.

The use of direct manual pressure for the control of life-threatening bleeding is limited and indirect.

Evidence supports the use of haemostatic dressings, with direct manual pressure, for control of life-threatening bleeding.

Tourniquets have been shown to stop life-threatening bleeding from wounds to the limbs and to improve survival.

KEY RECOMMENDATIONS

To control severe-life threatening bleeding, apply direct pressure and consider the use of a haemostatic dressing or the application of a tourniquet.
For thermal burns, remove the casualty from the heat source and commence immediate cooling of the burn with cold or cool water for 20 minutes. Loosely cover the burn with a dry, sterile dressing or cling wrap.