SPECIAL CIRCUMSTANCES 2021

5 TOP MESSAGES

1 CHECK

- Follow the ABCDE approach
- Take safety measures where needed

TREAT

- Follow the ALS algorithm
- Minimise no-flow time
- Optimise oyxgenation
- Use your resources

3 PRIORITISE

- Reversible causes
- •4 Hs
- 4 Ts

MODIFY

- Modify ALS algorithm
- Special causes
- Special settings
- Special patient groups

5. CONSIDER

- Transfer
- ECPR

CORONARY THROMBOSIS

KEY EVIDENCE

Cardiovascular prevention reduces the risk of acute events

STEMI patients sustained ROSC immediate PCI if < 120min Fibrinolysis if > 120min

Early reperfusion improves outcomes following CA

No-STEMI patients sustained ROSC individualise decision to perform coronary angiography

KEY RECOMMENDATIONS

Enhance cardiovascular prevention & BLS training

Detect parameters suggesting coronary thrombosis Activate STEMI network immediately Resuscitate and choose reperfusion strategy considering setting and patient conditions

SPECIAL CIRCUMSTANCES 2021

CARDIAC ARREST FOLLOWING CARDIAC SURGERY

KEY EVIDENCE

Adequate training and protocols improve outcomes

Modifications to the standard ALS algorithm include immediate correction of reversible causes and emergent resternotomy

In patients with VF/pVT defibrillation with up to three stacked shocks might restore perfusion

In case of asystole or extreme bradycardia, epicardial or transcutaneous pacing might restore perfusion

KEY RECOMMENDATIONS

- Apply 3 consecutive shocks
- Apply early pacing
- Correct reversible causes
- Perform early resternotomy

TRAUMATIC CARDIAC ARREST

KEY EVIDENCE

TCA is different from CA due to medical causes

Treating reversible causes simultaneously takes priority over chest compressions

Ultrasound helps to identify the underlying reason(s)

Hypovolaemia from blood loss is a leading cause for TCA

KEY RECOMMENDATIONS

Treat reversible causes immediately

Don't pump an empty heart If appropriate:
 perform
 resuscitative
thoracotomy or
REBOA early

Control haemorrhage and restore blood volume

Use ultrasound to target resuscitative interventions

PULMONARY EMBOLISM

KEY EVIDENCE

Clinical history, capnography and echocardiography help to recognise PE during CPR

Initial PEA and low CO₂ readings support diagnosis

Thrombolytic treatment, surgical embolectomy or percutaneous mechanical thrombectomy might restore pulmonary perfusion

KEY RECOMMENDATIONS

Perform emergency echocardiography

Use capnography

Suspected PE => thrombolytics if CA or severe instability

Known PE =>
thrombolytics or
surgical embolectomy
or percutaneous
thrombectomy

Consider ECPR as a rescue therapy for selected patients

ACCIDENTAL HYPOTHERMIA

KEY EVIDENCE

Vital signs should be checked for 1 minute by clinical examination, ECG, EtCO2 and ultrasound

Arrested hypothermic patients should, where possible, be directly transferred to an ECLS centre for rewarming

In-hospital prognostication of successful ECLS rewarming should be based on the HOPE or ICE score, serum potassium prognostication is less reliable

KEY RECOMMENDATIONS

Use HOPE or ICE score for prognostication

Check for presence of vital signs for up to 1 minute

In hypothermic CA use ECLS rewarming